Rolling resistance refers to the resistance generated from a vehicle’s internal mechanical friction and from pneumatic tires and their interaction with the roadway surface. The primary source of this resistance is the deformation of the tire as it passes over the roadway surface. The force needed to overcome this deformation accounts for approximately 90% of the total rolling resistance. Depending on the vehicle’s weight and the material composition of the roadway surface, the penetration of the tire into the surface and the corresponding surface compression can also be a significant source of rolling resistance. However, for typical vehicle weights and pavement types, penetration and compression constitute only around 4% of the total rolling resistance. Finally, frictional motion due to the slippage of the tire on the roadway surface and, to a lesser extent, air circulation around the tire and wheel (the fanning effect) are sources accounting for roughly 6% of the total rolling resistance.
In considering the sources of rolling resistance, three factors are worthy of note. First, the rigidity of the tire and the roadway surface influence the degree of tire penetration, surface compression, and tire deformation. Hard, smooth, and dry roadway surfaces provide the lowest rolling resistance. Second, tire conditions, including inflation pressure and temperature, can have a substantial impact on rolling resistance. High tire inflation decreases rolling resistance on hard paved surfaces as a result of reduced friction but increases rolling resistance on soft unpaved surfaces due to additional surface penetration. Also, higher tire temperatures make the tire body more flexible, and thus less resistance is encountered during tire deformation. The third and final factor is the vehicle’s operating speed, which affects tire deformation. Increasing speed results in additional tire flexing and vibration and thus a higher rolling resistance.